Search results for "bilinear map"

showing 4 items of 4 documents

Hölder inequality for functions that are integrable with respect to bilinear maps

2008

Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p<\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu<\infty$. We get an analogue to Hölder's inequality in this setting.

CombinatoricsHölder's inequalityGeneral MathematicsBounded functionMathematical analysisBanach spaceFunction (mathematics)Bilinear mapSpace (mathematics)OmegaMeasure (mathematics)MathematicsMATHEMATICA SCANDINAVICA
researchProduct

Prediction of tyrosinase inhibition activity using atom-based bilinear indices.

2007

A set of novel atom-based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph-theoretical electronic-density matrices, M(k) and S(k), respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using M(k) and S(k) as matrix operators of bilinear transformations. Chemical information is coded by using different pair com…

PharmacologyMelaninsQuantitative structure–activity relationshipStochastic ProcessesSeries (mathematics)Molecular StructureChemistryMonophenol MonooxygenaseOrganic ChemistryBilinear interpolationLinear discriminant analysisBiochemistryStructure-Activity RelationshipDiscriminantModels ChemicalComputational chemistryMolecular descriptorDrug DiscoveryLinear algebraMolecular MedicineComputer SimulationGeneral Pharmacology Toxicology and PharmaceuticsBilinear mapEnzyme InhibitorsBiological systemChemMedChem
researchProduct

p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS

2008

AbstractWe introduce the spaces Vℬp(X) (respectively 𝒱ℬp(X)) of the vector measures ℱ:Σ→X of bounded (p,ℬ)-variation (respectively of bounded (p,ℬ)-semivariation) with respect to a bounded bilinear map ℬ:X×Y →Z and show that the spaces Lℬp(X) consisting of functions which are p-integrable with respect to ℬ, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vℬp(X). We characterize 𝒱ℬp(X) in terms of bilinear maps from Lp′×Y into Z and Vℬp(X) as a subspace of operators from Lp′(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe t…

Vector integrationDiscrete mathematicsVector measureGeneral MathematicsBounded functionBilinear interpolationBilinear formBilinear mapP-variationSubspace topologyMathematicsBulletin of the Australian Mathematical Society
researchProduct

VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS

2008

Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…

Discrete mathematicsIntegrable systemGeneral MathematicsBanach spaceFunction (mathematics)Space (mathematics)Measure (mathematics)Omegavector-valued functionsbilinear mapBounded function42B3047B35Vector-valued functionMathematics
researchProduct